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Abstract

The present work focuses on the development, implementation, and verification of a plane-stress continuum damage

mechanics (CDM) based model for composite materials. A physical treatment of damage growth based on the extensive

body of experimental literature on the subject is combined with the mathematical rigour of a CDM description to form

the foundation of the model. The model has been implemented in the commercial finite element code, LS-DYNA and

the results of the application of the model to the prediction of impact damage growth and its effects on the impact force

histories in carbon fibre reinforced plastic laminates are shown to be physically meaningful and accurate. Furthermore,

it is demonstrated that the material characterization parameters can be extracted from the results of standard test

methodologies for which a large body of published data already exists for many composite materials.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Background

Attempt to address the issue of damage growth in laminated fibre-reinforced plastic (FRP) composites have

been made by an ever-increasing number of researchers through the use of continuum damage mechanics

(CDM). Simply stated, CDM attempts to predict the effect of microscale defects and damage at a macroscale
by making assumptions about the nature of the damage and its effect on the macroscale properties (e.g.

modulus) of the material (Kachanov, 1958, 1986; Krajcinovic, 1984, 1996; and Ortiz, 1985, among others).

The basis for the stress–strain relationship in many CDM approaches is the concept of strain, stress, or

energy equivalence (Simo and Ju, 1987; Chaboche, 1988a,b; Chow and Wang, 1987; Kennedy and Nahan,
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1997; Krajcinovic, 1984, 1996; Lemâııtre and Chaboche, 1978; Yazdchi et al., 1996). In the commonly used

strain equivalence approach, a material containing damage, subjected to a strain, e, and under a state of
stress, r, can be represented as an equivalent undamaged material subject to the same strain, e, but under an
effective stress state, r̂r. This can be expressed mathematically by the relation:

fr̂rg ¼ ½MðxÞ�frg ð1Þ

where ½MðxÞ� is a transformation tensor which is a function of the damage state, x, and frg, fr̂rg are the
actual stress and equivalent stress tensors. Note that here and throughout the paper the symmetric second-

order and fourth-order tensors are written in Voigt matrix notation.

Introducing the effective stress–strain relationship, fr̂rg ¼ ½C0�feg, into Eq. (1), we obtain:

frg ¼ ½M ��1½C0�feg ¼ ½CðxÞ�feg ð2Þ

where [C0] is the constitutive or stiffness tensor of the undamaged material and [CðxÞ] is the damaged or
effective stiffness tensor. The entries of [CðxÞ] are the elastic coefficients, which are functions of the un-
damaged (or initial) elastic material constants and the damage state x.
The role of a CDM model is to provide a mathematical description of the dependence of these elastic

coefficients (i.e. the residual stiffness functions) on the damage state and of the change in the damage state,

x, with load state. The damage variable x is typically expressed as a function of the strain and/or the strain
rate through a scalar-valued history parameter r; i.e. x ¼ xðrÞ. The parameter r assumes a role similar to
the flow stress in incremental plasticity theory and obeys a loading function f in the strain space,
f ¼ F ðeÞ � r, where F is a scalar potential function of the strain components (i.e. an effective strain). The
damage threshold, r, which in multiaxial loading case determines the size of the damage surface can be a
function of both strain and strain-rate to account for potential rate dependency of the damage. The key to

the success of all CDM models is to maintain a coherent link with the physical observations of damage

growth and material response.

1.2. Motivation for model development

As a preliminary step in the development of a new CDM model, an existing composite damage model

due to Matzenmiller et al. (1995) was implemented in the explicit finite element code, LS-DYNA (Williams
and Vaziri, 1995, 2001). The purpose here was not to judge this model against other CDM theories but

rather to compare the predictions made by a CDM approach with a more traditional composite failure

model.

Williams and Vaziri (1995, 2001) evaluated the Matzenmiller et al. (MLT) model based on a series of

numerical analyses performed to predict the response of T800H/3900-2 carbon FRP (CFRP) composite

plates subject to non-penetrating normal impacts of various incident energy levels. The implementation of

the CDM-based composite damage model demonstrated significant improvements in the prediction of

damage growth and force and energy-time histories when compared to an existing composite failure model
in LS-DYNA. While results of the application of this model demonstrate that CDM provides a useful

framework for further development of damage models for laminated structures, a number of issues were

raised during the investigation, which should be addressed by a new damage model. These include:

• the physical significance of the choice of damage parameter,

• ease of material characterization,

• stacking sequence or lay-up dependence of the damage growth in laminated structures,

• rate dependence, and
• mesh size dependence of the predicted damage growth.
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The first three items are all related and are dealt with in some detail in this paper. The latter two items were

deemed to be beyond the scope of the present work. This is not to say, however, that their importance is

being downplayed. Rather, a reasonable structure for the model must first be developed before they can be

adequately addressed.

2. Model formulation

Our approach in the development of a new 3D CDM model for composites (Williams, 1998) has been to

divide the problem into two components; one concentrating on the in-plane response (the subject of this

paper) and the other on the out-of-plane or through-thickness response (see Floyd et al., 1999). Not only

does this simplify the formulation but also the model development is significantly quicker as one does not

have the computational overhead of running full 3D models during the iterative model development phase.

This work represents the first stage in the ongoing development of a family of CDM-based models, under

the general title CODAM (composite damage model). The remainder of this section is devoted to the

formulation of the plane-stress CODAM3Ds (i.e. shell element based) model.

2.1. Sub-structuring

The first feature of our approach is to treat the material as an orthotropic medium made up of a series of

repeating units through the thickness. Typically, constitutive models applicable to composite materials have

treated the composite as a stack of perfectly bonded unidirectional laminae (Chang and Chang, 1987;
Matzenmiller et al., 1995; Pickett et al., 1990). These models are based on the lamina behaviour and the

response of the bulk material is assumed to follow the first order shear deformable laminated plate theory

(constant shear through the thickness resulting in limited interaction between layers). Experimental ob-

servations, supported by analytical and numerical modelling, have clearly shown that the failure mode, and

hence the response of laminated composite materials is closely linked to the stacking sequence and lamina

interactions (see for example Dost et al., 1991; Lagace, 1984; Pagano and Pipes (1971)). The orientation of

the neighbouring plies play a major role in the response of a lamina particularly in the inelastic regime

where damage initiation and evolution in the lamina strongly depend on the level of confinement provided
by the adjacent plies in the laminate. In other words, the response of a single lamina in a stack is governed

by its in-situ characteristics. Generally, a laminate is made up of a number of repeating units (sub-lami-

nates) through the thickness. These sub-laminates largely control the lamina interactions caused by the

stacking sequence. As a result, a model constructed at this scale has the potential to incorporate these

interactions.

From an implementation point of view, the differences between the lamina and sub-laminate ap-

proaches are relatively minor. Plane stress shell elements use through-thickness integration points to

evaluate bending stresses (shown schematically in Fig. 1). These integration points are used in lamina
models by associating the appropriate local material angle with each integration point. The resulting

laminate response prediction is analogous to that obtained from a laminated plate theory type analy-

sis. The sub-laminate approach uses the same technique although in most cases a material angle is

not required. Typically a minimum of one integration point would be used for each sub-laminate. The

exception is a thin laminate where the minimum number of integration points required to accu-

rately capture the bending response may determine the number of points used. Overall, fewer integra-

tion points are required, hence increasing the efficiency of the model, and the interactions of the laminae

are incorporated in the sub-laminate constitutive behaviour, thus improving the accuracy of the predic-
tion.
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2.2. Selection of damage parameters

Traditionally damage parameters are associated with cracking (e.g. reduction in the cross sectional area

of the load bearing material) in the principal lamina directions, parallel and perpendicular to the fibre

direction, corresponding to matrix and fibre dominated damage modes. At the sub-laminate scale there is

no clearly defined directionality of the damage modes in arbitrary lay-ups. The problem is simplified if we

consider only symmetric laminates (½0=	45=90�nS, ½	60�nS and ½0=90n�S for example), where there exists at
least a material symmetry at the sub-laminate level. By defining two damage parameters, xx and xy , aligned
with the sub-laminate co-ordinate system it is possible to characterize the damage state as projections of the

crack densities normalized to the saturation crack density in the principal material directions.

While adequately describing the effect of matrix cracking and fibre failure on Ex and Ey in simple cross-

ply laminates (i.e. ½0n=90m�nS), there is a need to define an additional damage term to model the interactive
effect of the two damage parameters on shear modulus in more general symmetric lay-ups (e.g.

½0=	45=90�nS). A survey of approaches taken to this problem in other CDM models shows a somewhat

varied treatment, e.g. the following two distinct formulations have been used for shear modulus of a

damaged composite within the common framework of energy equivalent CDM:

G12 ¼ ð1� x1Þð1� x2ÞG012 Chow and Wang ð1987Þ ð3Þ

G12 ¼
2ð1� x1Þ2ð1� x2Þ2

ð1� x1Þ2 þ ð1� x2Þ2
G012 Yazdchi et al: ð1996Þ ð4Þ

Fig. 1. Shell representation of a laminated composite using a lamina and sub-laminate based constitutive model.

2270 K.V. Williams et al. / International Journal of Solids and Structures 40 (2003) 2267–2300



Note that both of these are lamina based with indices 1 and 2 referring to the principal material di-

rections in the lamina. Matzenmiller et al. (1995) take a somewhat unconventional approach of introducing

a completely independent �shear damage parameter�, xs, with an associated damage threshold and growth

law. Although less physical, this approach avoids the difficulty associated with defining an interactive term.
If Eq. (3) were to be used as a basis for shear modulus reduction due to damage, then xs would take the

following form:

xs ¼ xx þ xy � xxxy ð5Þ

However, at intermediate levels of damage, this function predicts a more significant effect of the damage

state on shear than on either of the principal directions. For example, with xx ¼ 0:5 and xy ¼ 0:5 one might
expect xs to be on the order of 0.5 but Eq. (5) results in xs ¼ 0:75, a significantly higher value. By modi-
fying Eq. (5) slightly such that:

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x þ x2y � xxxy

q
ð6Þ

then one obtains the more reasonable result of xs ¼ 0:50. The latter is the formulation adopted here for the
damage parameter associated with shear modulus reduction.

2.3. Damage growth law

One of our main concerns with the MLT approach is the use of a single mathematical expression to
describe the damage evolution as a function of strain over the entire load range, an approach which is

characteristic of many CDM models. Combining this with a linearly varying modulus reduction as a

function of damage results in a strain-softening type stress–strain curve that is non-linear (corresponding to

a damaging material) over the entire range of strains. In other words, the ascending and descending

branches of the stress–strain curve are coupled (i.e. the Weibull parameter m controls the entire shape of the
curve) thus restricting the versatility of the model to represent different amounts of softening without af-

fecting the elastic response and peak stress value.

We adopt a more versatile and physically meaningful approach where we consider three behaviour re-
gimes or zones in the material response: (i) undamaged elastic, (ii) damage phase 1 (matrix/delamination

dominated), and (iii) damage phase 2 (fibre and matrix/delamination dominated). Each is characterized by

a different relationship between the damage variables xi (i ¼ x; y) and the corresponding load state defined
by scalar potential functions Fi. In keeping with experimental observations (e.g. Delfosse and Poursartip,
1997), the present model assumes that matrix damage is closely associated with delamination so that

quantification of matrix damage leads to a good estimate of the delamination area.

The simplest and most flexible approach to capture the changes in damage growth is to assume a linear

relationship within each of these regions (e.g. Pickett et al., 1990). First consider the matrix damage. We
define a threshold value for damage initiation r0 ¼ F I marking the end of the elastic response and the onset
of matrix damage (xI ¼ 0 at F I).
The assumption of decoupled fibre and matrix damage growth means that, regardless of any fibre

damage which may develop, the matrix damage will continue to grow linearly with damage up to rupture

defined by the ultimate damage threshold rf ¼ F III where xIII ¼ 1 (see Fig. 2). The total amount of damage
attributed to matrix cracking and delamination, x0

m, will be some value less than 1.0, determined by the lay-

up of the sub-laminate.

Following the same argument for fibre breakage, we define F II as the threshold for onset of fibre
damage and x0

f ¼ 1� x0
m as the proportion of the total damage attributed to fibre failure. The net damage
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growth function results from the superposition of these two functions as shown in Fig. 2. Note that
the damage state xII at the transition between the two phases of damage growth is not an independent
parameter. Rather, it is dependent on the values of F I, F II, F III, and x0

m (x
0
f being a function of x0

m) such

that:

xII ¼ x0
m

F II � F I

F III � F I

� �
ð7Þ

The resulting piece-wise linear relation between x and F is shown in Fig. 2. x, as a function of the load state
is:

x ¼

0 0 < F 6 F I

xII
F � F I

F II � F I

� �
F I < F 6 F II

xII þ ð1� xIIÞ F � F II

F III � F II

� �
F II < F 6 F III

1 F > F III

8>>>>>><
>>>>>>:

ð8Þ

It is important to note that in keeping with the thermodynamic constraints in damage mechanics, damage is

considered to be an irreversible process and therefore x is a monotonically increasing function of time t
such that:

x ¼ max½xsjs6 t; xt� ð9Þ

1

ω

′ωm

F εb g
ω I = 0

FIIIFI

1

ω

′ωm

F εb g
ω I = 0

FIIIFI 0

1

ω

′ = − ′ω ωf m1

FII FIII F εa fFI
0

1

ω

′ = − ′ω ωf m1

FII FIII F εa fFI

(a) (b)

0

ω

ω II

F εa fFII FIIIFI

′ωm

′ = − ′ω ωf m1
ω III = 1

0

ω

ω II

F εa fFII FIIFI

′ωm

′ = − ′ω ωf m1
ω III = 1

(c) 

Matrix Fibre

Fig. 2. Construction of the bilinear damage growth law (c) based on the combined contributions of (a) matrix and delamination

damage and (b) fibre breakage.
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where xt is the damage calculated from Eq. (8) for the current load state, and xs represents the state of

damage at previous times s6 t. Clearly, the evolution of the damage threshold can be mathematically
expressed as

r ¼ max½F sjs6 t; r0� ð10Þ

and the loading–unloading conditions follow the Kuhn–Tucker conditions:

_rrP 0; f 6 0; _rrf ¼ 0 ð11Þ

where f ¼ F � r and overdot denotes differentiation with respect to time.
In the above discussion, the second phase of damage is assumed to incorporate both matrix damage and

fibre damage. There are three other possibilities that should be identified: (1) the first mode of damage

saturates at or before the onset of the second, (2) the first mode saturates after the onset of the second but

before rupture, and (3) the second mode of damage saturates before rupture. The first two cases can be used

to describe the response of a ½0n=90m�S laminate, for example. Matrix/delamination damage in brittle matrix
cross-ply laminates can saturate before the onset of fibre failure while fibre breakage will typically initiate

before matrix cracking saturation in a tough matrix FRP system. The limit is the case considered in this

paper where matrix/delamination damage continues to grow until rupture.

The behaviour described by the third case represents a material where fibre damage is arrested, either by
a physical mechanism (a toughening of the response) or by a change in the load state resulting from the

softening of the sub-laminate and/or the decoupling of the plies. For example, it is conceivable that growth

of a significant amount of delamination damage can allow individual plies to decouple and rotate, aligning

the fibre directions with the principal loading direction without driving more fibre damage.

These three additional damage growth behaviours are characterized by a three-phase (i.e. trilinear) res-

ponse. For the purposes of this paper we are assuming that the two-phase damage growth model applies.

The extension of the model to cover these more mathematically (not physically) complex material responses

is being actively pursued (e.g., Floyd et al., 2001) as it is largely a coding issue and the theoretical foun-
dation of the model remains the same.

2.4. Damage potential function

In general, the damage potential function, F , which is the driving force for damage growth, can be a
function of the strains (or stresses). The selection of the damage potential function is the least physical

component of the present model. A number of approaches can be taken including the use of strength-based

failure criteria such as those presented by Tsai and Wu (1971) or Hashin (1980). The appropriate choice of a
mathematical function for predicting failure (initial and final) of FRP laminates is still a subject of much

debate among the leading researchers in the composites community. A recent ‘‘world wide failure exercise’’

organized by Hinton et al. (Hinton and Soden, 1998; Soden et al., 1998; Hinton et al., 2001) was launched

to assess the predictive capability of some of the most established failure theories available in the literature.

The outcome of this study was that even for seemingly simple test cases there was a fairly wide discrepancy

between the various predictions and test results suggesting that the subject of failure theories is still far from

being mature.

Among the many possibilities available, the potential function in our model is assumed to be an
equivalent strain given by a function of local strain components that has the following general form:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ex
K

	 
2
� ex

K

	 
 ey
L

	 

þ ey

L

	 
2
þ

cxy
S

	 
2
þ

cyz
T

	 
2
þ czx

U

	 
2r
ð12Þ
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For simplicity, rate effects on the values of the threshold parameter r in the loading function f ¼ F � r are
ignored. This limits the initial application of the model to rate insensitive materials such as CFRP and, to a

lesser degree, glass fibre-reinforced plastic (GFRP) composites.

Eq. (12) describes an ellipsoidal surface in the strain space (similar to distortional energy-based failure
criteria). The two out-of-plane shear strain terms have been added so as to account for all the strains that

can contribute to damage growth in a shear deformable shell element formulation used in this study (see

Section 5.4). Here the constants K, L, S, T , and U are not used as measures of strength but rather as scalars
to provide a measure of the relative contribution of each strain component to the driving force for damage

growth. The relative effect of tensile and compressive loading on the damage growth is also introduced

through the damage potential functions by introducing a separate set of constants for tension and com-

pression (e.g. Kt if ex P 0 and Kc if ex < 0).
The incorporation of through-thickness shear terms accounts for the effects of the cyz and czx strains on

the initiation of delamination damage in a plate subject to bending loads. These strains, along with the

through-thickness strain, ez, are also responsible for edge effects in laminated composites. Delamination
growth can be initiated by an incompatibility of the through-thickness strain (stress) field between neigh-

bouring plies of mismatched angle at a discontinuity such as the edge of a laminated plate subjected to

bending and/or in-plane loading. However, by smearing the through-thickness anisotropy of the sub-

laminates, the model becomes insensitive to these effects under purely in-plane loading. The through-

thickness strain has not been included in the potential function because in a plane stress shell formulation ez
is merely a weighted sum of the in-plane strains, which have already been accounted for in Eq. (12), i.e.

ez ¼ �ðmxzex þ myzeyÞ ð13Þ
However, the ez term becomes very important in 3D formulations where it is no longer a simple function of
the in-plane strains. Local tensile and compressive through-thickness strains serve to promote and inhibit

delamination growth, respectively. These strains can result from contact forces for example.

2.5. Effect of damage on elastic constants

The amount of damage sustained by the sub-laminate will affect each of the material moduli to varying

degrees. Many lamina based CDM models developed for composites assume that the loss of modulus is

linear with damage (refer to Fig. 3a):

REi ¼
Ei

E0i
¼ ð1� kixiÞ ð14Þ

E/E0

k

ω

1

1

Single Damage
Mode

0

E/E0

1

1 ω

Damag e
Phase 1

Damage
Phases 1 + 2

0

(a) (b)

Fig. 3. Modulus variation according to (a) linear and (b) bilinear normalized residual stiffness functions.
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where REi is the normalized residual modulus (modulus of the damaged material) in the ith direction, Ei is

the residual modulus, E0i is the undamaged modulus, and ki (ki 6 1) are constants that define the rate of
modulus loss with the damage, xi. This simple relationship is possible because the lamina moduli are only

dependent on the damage parameter associated with the appropriate principal material direction. That is,
the longitudinal stiffness (E1) is dominated by fibre breakage (defined by x1) and the transverse stiffness (E2)
by matrix damage (x2). However, in a sub-laminate, the modulus reduction is a function of both matrix and
fibre damage (refer to the discussion above in Section 2.3). One would expect the rate of stiffness loss

associated with matrix/delamination damage and fibre breakage to be different. Therefore, the modulus loss

is assumed to be a bilinear function of the damage parameter (Fig. 3b). A bilinear representation of the

residual modulus function was also used by Pickett et al. (1990) although it was not applied at this scale nor

did the damage parameters have the same meaning.

This approach is supported by the work of Poursartip et al. (1986), for example, who showed that the
stiffness loss due to matrix damage and delamination was linear with damage density in a ½45=90=� 45=0�S
laminate subjected to fatigue loading (i.e. stable crack growth). After a certain level of damage was reached,

corresponding to a 35% stiffness loss in the particular CFRP system investigated, a change in mecha-

nism was observed. Poursartip et al. attributed this to the initiation of fibre dominated failure and, based

on the work by Steif (1984) on stiffness reduction due to fibre breakage, proposed that a second �leg�
could be added to the overall stiffness reduction function to reflect the additional effect of fibre failure. Steif

(1984) has shown further that the relationship between stiffness loss and fibre breakage density is a linear

function.
Following this approach we define a general bilinear curve to describe the modulus loss with damage as

shown in Fig. 4. The normalized reduced stiffness at saturation of matrix/delamination damage, R0
E, is

associated with the corresponding level of damage x0
m (defined in Section 2.3). Plotting this point on Fig. 4

establishes the slope of the residual stiffness curve associated with matrix/delamination damage. Identifying

the onset of fibre damage (defined by xII) on Fig. 4, the corresponding normalized residual stiffness can be
evaluated as:

EII ¼ 1� ð1� R0
EÞ

xII

x0
m

ð15Þ

0
1

1

R E

EII

ωII ω

EIII

′ωm

′RE

0
1

1

R E

EII

ω

′RE

ωII ′ωm

(a) (b) 

Fig. 4. Bilinear residual stiffness curve showing modulus loss (E=E0) versus damage (x) relationship: (a) generalized function with a
residual modulus and (b) special case with saturation of damage at rupture (xIII ¼ 0 and EIII ¼ 0).
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Given the orthotropic nature of the material, independent functions need to be defined for reduction of

elastic constants:

Ex ¼ RExðxxÞE0x ; Ey ¼ REy ðxyÞE0y ; Gxy ¼ RGxy ðxx;xyÞG0xy ; and mxy ¼ Rmxy ðxx;xyÞm0xy ð16Þ

where the normalized reduction function, RX ðxÞ, with X denoting any one of the orthotropic elastic

constants, takes the following generalized form (see Fig. 4):

RX ¼
1þ ðX II � 1Þ x

xII
0 < x6xII

X II
1� x
1� xII

� �
xII < x6 1

8><
>: ð17Þ

Here the assumption is made that complete damage will result in total stiffness loss (i.e. E ¼ 0 when x ¼ 1).
Potential differences in stiffness loss under tensile and compressive loading are incorporated by allowing

independent definitions of the normalized residual modulus functions for the Young�s moduli for each
loading condition.

Poisson�s ratio m has not been included in the discussions leading to Eq. (17) because the degradation of
this interaction term is not independent of the functions chosen for the moduli Ex and Ey . The major

symmetry of the constitutive stiffness and compliance tensors must be retained both for an undamaged and

damaged material, and as a result the following reciprocity relationship must hold:

m0xy
E0x

¼
m0yx
E0y

and
mxy
Ex

¼ myx
Ey

ð18Þ

Therefore:

Rmxy ðxx;xyÞm0xy
RExðxxÞE0x

¼
Rmyxðxx;xyÞm0yx
REy xy

� 

E0y

and
Rmxy ðxx;xyÞ
RExðxxÞ

¼
Rmyxðxx;xyÞ
REy ðxyÞ

ð19Þ

One possible solution, albeit not unique, would be to have:

Rmxy ðxx;xyÞ ¼ RExðxxÞ and Rmyxðxx;xyÞ ¼ REy ðxyÞ ð20Þ

The modulus degradation functions applied to mxy and myx must be the same functions of xx and xy that are
applied to Ex and Ey , respectively. Experimental evidence for the effects of damage on Poisson�s ratio is rare,
possibly because of the difficulties associated with measuring mxy in specimens with progressive damage
development. However, Camponeschi and Stinchcomb (1982) provide some evidence that the reduction in

mxy measured during fatigue loading of quasi-isotropic CFRP laminates is of the same order and follows the
same trends as the reduction in Ex.

In the present approach the effect of delamination is included in the overall effect of matrix damage on

the in-plane elastic constants (e.g. a reduction of E corresponding to a reduction in bending stiffness and the
reduction of G and m corresponding to decoupling or a release of the constraint between neighbouring
laminae within the sub-laminate).

2.6. Constitutive relationship

Having defined the normalized residual stiffness functions, we can now return to the constitutive
equation and derive the final form of the plane stress constitutive equation:
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frg ¼ ½C�feg ¼
C11 C12 0

C21 C22 0

0 0 C66

2
4

3
5

ex
ey
cxy

8<
:

9=
; ð21Þ

where the coefficients of the constitutive secant stiffness tensor, Cij, are functions of the damage state,
REðxx;xyÞ, and the undamaged elastic constants, E0, G0, and m0.
It is convenient to approach the problem of deriving these coefficients using the compliance tensor,

½H � ¼ ½C��1 given by:

½H � ¼

1

Ex
� mxy

Ex
0

� myx
Ey

� 1

Ey
0

0 0
1

Gxy

2
66666664

3
77777775

ð22Þ

Substituting for the damaged elastic constants from Eq. (16), and using the relationships developed for Rmxy

and Rmyx in Eq. (20) we obtain the final form of the constitutive stiffness tensor:

½C� ¼

RExE
0
x

ð1� RExREym0xym
0
yxÞ

RExREyE
0
ym
0
xy

ð1� RExREym0xym
0
xyÞ

0

REyE
0
y

ð1� RExREym0xym
0
yxÞ

0

SYM RGxyG
0
xy

2
666664

3
777775

ð23Þ

Note that the functions RX vary between 1 and 0. As a result, the constitutive tensor is positive definite over

the entire range of damage.

2.7. 1D Stress–strain relationship

To better illustrate the features of the model let us consider the resulting stress–strain response for a one-

dimensional case. First, we will construct the stress–strain relationships for each of the three zones: un-

damaged elastic (stage 1), onset of the first damage phase (stage 2), and onset of the second damage phase

(stage 3).

In the one-dimensional case, the damage potential function becomes:

F ðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

e
1

	 
2r
¼ e ð24Þ

Substituting into Eq. (8) one obtains:

x ¼

0 0 < e6 F I

xII
e � F I

F II � F I

� �
F I < e6 F II

xII þ ð1� xIIÞ e � F II

F III � F II

� �
F II < e6 F III

1 F III < e

8>>>>>>><
>>>>>>>:

ð25Þ

In stage 1:

r ¼ E0e 0 < e < F I ð26Þ
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For stage 2, from Eq. (17):

r ¼ Ee ¼ ½1þ EII
	

� 1Þ x
xII

i
E0e ð27Þ

which after substitution for x from Eq. (25) in the range F I < e6 F II yields:

r ¼ F II � EIIF I

F II � F I

� �
E0e þ EII � 1

F II � F I

� �
E0e2 F I < e < F II ð28Þ

Similarly for stage 3:

r ¼ EIIF III

F III � F II

� �
E0e � EII

F III � F II

� �
E0e2 F II < e < F III ð29Þ

For e P F III, x ¼ 1:0 and hence E ¼ 0 and r ¼ 0.
The predicted stress–strain response is shown in Fig. 5. The flexibility of the bilinear model is demon-

strated in Fig. 6. By varying the damage growth and residual stiffness curves it is possible to obtain a

material response that mimics the response predicted by the traditional instantaneous failure models (Fig.

6a), a material response that approaches the statistically based CDM models where the stress is a single
continuous function of strain (Fig. 6b), or responses in-between. Fig. 6c shows a response with an elastic

region followed by the onset of damage leading to catastrophic failure. Fig. 6d shows the complete response

(similar to Fig. 5) with a linear-elastic region, the onset of damage, and finally a softening response. It is

interesting to note that the resulting constitutive law is independent of xII.
The role of the model has been to define the stiffness terms as a function of damage, Eq. (17), and in turn

the damage as a function of loading, Eq. (8). In fact, what is implied in the model development is the

decomposition of the relationship between the stiffness change and the strain state:

Fig. 5. Predicted one-dimensional stress–strain response based on the combination of bilinear damage growth and bilinear residual

stiffness functions.
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oE
oe

¼ oE
ox


 ox
oe

ð30Þ

where oE=ox and ox=oe can be obtained explicitly from Eqs. (17) and (8), respectively. x is, in fact, an
intermediate value which, in itself is convenient as it allows a further interpretation of the resulting de-

gradation of the material properties in terms of a more physical and more easily observed quantity,

damage.

The link between the two functions oE=ox and ox=oe is xII or rather x0
m. The effect of changing x0

m is

shown in Fig. 7. It can be seen that shifting x0
m while keeping the modulus at saturation of matrix damage,

R0
E, constant results in a shift in, x

II defined by the damage growth function. This shift in xII, when plotted

Fig. 6. Examples of predicted one-dimensional stress–strain response for the proposed model CODAM.
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on the residual stiffness curves results in no change in EII. Note that, although the slopes of both the damage
growth and residual stiffness functions change, the value of EII at F ¼ F II, and hence the relationship
between E and F (or e), remains the same in both segments of the two functions. The result is that the rate
of stiffness loss with strain, oE=oe, is independent of x0

m (or xII). While its value may not directly influence
the predicted response, x0

m does provide a physical interpretation of the damage growth and stiffness re-

duction curves in that it allows a more direct characterization of the damage model using the data available

in the literature on stiffness reduction.

2.8. Numerical implementation

The CODAMmaterial model described above has been implemented as a user material (UMAT) module

for shell elements, in the explicit non-linear finite element code, LS-DYNA (Hallquist et al., 1994). Similar

to all other constitutive modules, the CODAM subroutine is strain-driven. Given that the relations between

the damage and damage potential in the principal sub-laminate directions i ¼ x, y are defined by the user as
input, the algorithmic details at a time station tnþ1 ¼ tn þ Dt and at a given integration point can be
summarized as follows:

Fig. 7. Effect of changing the damage associated with saturation of matrix cracking on the residual stiffness and damage growth

functions.
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1. Based on the current strain rates, f _eegnþ1, update the total strains: fegnþ1 ¼ fegn þ f _eegnþ1Dt.
2. Compute the effective strain in each of the principal directions i of the sub-laminate: Finþ1 ¼

ðfegTnþ1½K�ifegnþ1Þ
1=2
, where ½K�i is the matrix of coefficients involving the constants K, L, S, T , and U

for the appropriate direction i (see Eq. (12)).
3. Evaluate the damage loading function: fi ¼ Finþ1 � rin , where ri is a monotonically increasing deforma-
tion history parameter defined as rin ¼ maxðFin ; F Ii Þ in which F Ii is the threshold value for damage initi-
ation in the i direction. Note that the initial value of ri at time t ¼ 0 is F Ii , i.e. ri0 ¼ F Ii .

4. If fi < 0 then rinþ1 ¼ rin and xinþ1 ¼ xin . In this case the damage parameters and the elastic constants need

not be updated.

5. If fi > 0 then rinþ1 ¼ Finþ1 and the new damage parameters xinþ1 are computed using Eq. (8). The corres-

ponding modulus reductions are computed from Eq. (17) and the updated constitutive stiffness tensor

½C�nþ1 is evaluated according to Eq. (23).
6. Compute the stresses that correspond to the current level of strains, frgnþ1 ¼ ½C�nþ1fegnþ1.
7. The updated stresses and history parameters are passed on to the other routines in LS-DYNA and the

computation marches forward in time based on standard procedures in explicit codes.

3. Material characterization

One of the most difficult tasks associated with applying many of the available CDM models has been the

measurement of the material parameters required. Generally, CDM models have used a simple predefined

residual stiffness function (e.g. E=E0 ¼ ð1� kxÞ where it is typically assumed that k ¼ 1) in conjunction
with a more complex damage growth law (e.g. the Weibull function used by the MLT model). The damage

laws are frequently abstract and the means of determining the parameters required are often not clear. In

the current approach, the damage growth function has been carefully chosen to be representative of cur-

rently available and published experimental observations. Equally, the residual stiffness functions, although

perhaps more complex than many other CDM models, are also representative of experimental observations
as will be discussed in the next sections.

There are four sets of material parameters that are required by the model. The first set contains standard

material properties such as density and initial elastic modulus that are required by all models: elastic, elasto-

plastic, and CDM. The second, third, and fourth sets consist of the points that define the damage growth

curves (Eq. (8)), the normalized residual stiffness curves (Eq. (17)), and the constants required by the ef-

fective strain functions (Eq. (12)) which are specific requirements of the model developed here.

3.1. Elastic and strength constants

The experimental methods for measuring material elastic and strength constants for FRPs are widely

accepted, and standard methodologies exist (see, for example, ASTM (2002)). While relatively simple to

perform, the complete series of tests required to characterize a given material system are expensive both in

terms of time and resources. With over four decades of research in the field of composites there exists an

extensive body of published characterization data available for many of the widely used material systems
(see for example Tsai (1988)). These data can be supplemented by material suppliers and larger material

end-users that frequently have libraries of material characterization data for use in design calculations.

3.2. Residual stiffness functions

The characterization of the effect of damage growth in a laminated composite requires the measurement
of the material behaviour under stable crack growth. Traditional testing techniques such as un-notched
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coupon tensile tests result in unstable crack growth soon after damage initiation. The measurement of

stiffness loss over an appreciable loading range is therefore not possible using these techniques. Experi-

mentally there are two ways to achieve stable crack growth:

• grow the damage very slowly (e.g. cyclic or fatigue loading), or

• grow the damage in a very constrained manner in a test specimen under non-uniform deformation field

(e.g. compact tension specimen).

Most literature on the subject concentrates on the first method, fatigue crack growth, as a means of

characterizing the susceptibility of composites to subcritical damage growth: initial flaws and in-service

damage. As a result little work has been done on damage past saturation of matrix cracking. Typically, the

initiation of any substantial fibre damage is considered to be outside the acceptable range of loading.
Some notable examples of fatigue crack growth investigations include the work by Highsmith and

Reifsnider (1982), Ogin et al. (1985), Talreja (1985a), and Kress and Stinchcomb (1985), to name but a few.

A significant outcome of this body of work was the notion that changes in moduli observed during the

fatigue testing of coupons provides a direct quantitative measure of damage (Poursartip et al., 1986;

Camponeschi and Stinchcomb, 1982). Therefore, the converse is true, i.e. a physical measure of damage can

be used to quantitatively predict changes in modulus. Herein lies the physical basis for the residual stiffness

functions presented above in Section 2.5. This relationship between damage and modulus also allows the

characterization of modulus loss based on the available body of literature on fatigue damage growth.
As discussed in Section 2.5, the first segment of the residual stiffness curve is most easily characterized by

defining the residual stiffness at matrix crack and delamination saturation (R0
E at x ¼ x0

m). The transition

point between the two mechanisms, xII, is a direct consequence of the value of x0
m and the damage

thresholds discussed in Section 3.3 below. A simple mathematical approach that can be used to estimate the

stiffness loss at saturation of matrix damage is the ply-discount method.

Implicit in the ply-discount method is the assumption that the crack growth is unconstrained. Results by

Talreja (1985a), among others, have shown that ply-discount predictions can either over- or under-predict

the stiffness loss due to matrix damage depending on the ply lay-up. In response to this, various analytical
methods have been proposed including a modified ply-discount method by Highsmith and Reifsnider

(1982), a damage mechanics approach by Talreja (1985a,b), and a more detailed micromechanical analysis

by Laws and Brockenbrough (1987). While providing more insight into the effects of changing crack density

and crack geometry on stiffness loss, it is unclear if the added complication of these approaches is warranted

in the current analysis where only the stiffness loss at saturation of matrix cracking is desired. Although

errors of five or ten percent in the prediction of the overall stiffness reduction due to matrix damage may be

significant in some applications, results of the application of the model presented here (see Section 5) show

that predictions are not very sensitive to such variations in R0
E.

The definition of the level of damage at which the matrix damage saturates, x0
m, is a consequence of the

representation of the damage as the volume or projected area of damage in the sub-laminate. A simple ratio

of the net and total cross sectional areas can be used to estimate x0
m:

x0
m ¼ 1� ANet

ATotal
ð31Þ

where ATotal is the total cross-sectional area and ANet is the cross-sectional area of the remaining load
bearing material. The discussion above assumes that damage or cracking in the failed plies at saturation of

matrix damage is complete. It also assumes that there is no stacking sequence effect. This is not strictly

accurate. A [0=	45=90�nS lay-up will be more prone to delamination than a ½0=45=90=� 45�nS, for example.
However, the approach provides a first approximation of x0

m.
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While providing guidance on appropriate values for R0
E and x0

m, the methods described above are in-

tended for cases where experimental results for the particular material and stacking sequence are not

available. As mentioned above, the ply-discount method is not a completely accurate predictor of stiffness

loss due to damage. Talreja (1985b), for example, obtained experimental results for normalized stiffness
reduction as a function of applied stress for a ½903=0�S GFRP and a ½45=90=� 45=90=45=90=� 45=90=90�S
CFRP. The experimentally measured normalized stiffness at saturation of matrix cracking was 0.6 for the

½903=0�S GFRP and 0.72 for the ½45=90=� 45=90=45=90=� 45=90=90�S CFRP. Some other examples in-
clude the work by Bakis and Stinchcomb (1986) (effect of loading condition on stiffness reduction) and

Kress and Stinchcomb (1985) (effect of material lay-up).

In the preceding discussions of stiffness reduction due to matrix cracking, no mention has been made of

delamination. While a significant mode of failure in laminated composites, the difficulties associated with

modelling delamination in a plane-stress analysis has often lead to the omission of an explicit description of
its effect on the material response. In the analyses presented here, delamination and matrix damage have

been treated synonymously. All discussion of the effect of matrix damage on stiffness through reduction

functions, RX , applies equally to delamination.

This implicit combination of the intralaminar and interlaminar matrix failure modes is based on work

that has shown that the two damage modes generally occur together. There are a few exceptions such as

delaminations that grow from a free surface (e.g. the free edge of a plate or a hole) in the absence of in-

tralaminar matrix cracking (Hsu and Herakovich, 1977; O�Brien, 1982) and matrix cracking that can occur
in internally pressurised composite cylinders without causing significant delamination (e.g. Hull et al.,
1978). In most cases, however, matrix cracking drives delamination between plies of dissimilar lay-up angle,

which in turn drive more matrix cracking when the delamination front reaches the fibre direction of the

neighbouring ply. Further, work by a number of authors has shown that the in-plane stiffness loss in angle-

ply laminates varies linearly with delamination size (Poursartip et al., 1986). Experimental measurements of

stiffness reduction due to matrix cracking already include the effects of delamination and, as the reduction is

linear with size of damage (i.e. x), the linear residual stiffness function presented in Eq. (17) is still valid.

3.3. Damage growth functions

Characterization of the two damage growth functions is simply a matter of defining the thresholds for

initiation of the two damage modes, matrix cracking/delamination and fibre failure. The other pieces of

information required, namely the values for x0
m and x0

f (x
0
f ¼ 1� x0

m), have been defined in the discussion

of stiffness reduction in Section 3.2.

3.3.1. Mathematical approach

Characterizing the values of the damage thresholds F I, F II, and F III may seem difficult due to the in-
teraction between the normal and shear strains in the damage potential functions (Eq. (12)). However, this

task is greatly simplified if one notes that in the case of a uniaxial strain, the damage potential functions
simply become a function of the applied strain. From Eq. (25) F I, F II, and F III are the applied uniaxial
strains at which each failure mode (matrix cracking/delamination, fibre failure, and final rupture) initiates.

One effect that is not taken into account by such a simple mathematical approach is the constraint offered

by neighbouring undamaged plies. The strain at the onset of matrix cracking is observed to increase as the

degree of constraint increases (Talreja, 1985a). For example, F I in the 0� ply direction for a [0/90]4S is ob-
served to be higher than the corresponding value for a ½0=903�S. For other angle-ply laminates the effect of the
constraint depends on the lay-up and is by no means intuitive. Talreja (1985a) observed almost no difference

between the strain required for initiation of matrix cracking in a ½60=90=� 60=90=60=90=� 60=90�S and that
of an unconstrained 90� ply.
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If an increased level of accuracy is desired, one must turn to experimental measurements of the strain at

onset of each phase of damage. The same curves for stiffness reduction as a function of applied load used

above to estimate R0
E, can also provide information on F

I and F II. F I, the strain at onset of matrix cracking,
can be evaluated directly from measured matrix crack density as a function of the applied strain (see the
results presented by Talreja (1985a) and Highsmith and Reifsnider (1982), for example).

3.3.2. Rupture threshold

The parameter which is the least intuitive is the threshold for rupture, F III. Here one must rely exclusively
on experimental data. There is no simple analytical method available for estimating this value as it depends
strongly on the lay-up and on interactions between neighbouring plies, both damaged and undamaged.

Work by Kongshavn and Poursartip (1999) provides some insight into an experimental technique that can

be used to measure this value. Kongshavn and Poursartip grew damage in a composite laminate by loading

a pre-notched oversized compact tension (OCT) specimen. The damage zone ahead of the notch was ob-

served to develop in a stable manner as it progressed across the specimen.

The stiffness loss and strain-to-failure of the damaged material in the softening zone were measured by

cutting small tensile specimens from the damaged and undamaged zones and loading them to failure.

Specimens cut from the undamaged region showed stiffnesses similar to the laminate stiffness and failure
strains on the order of the fibre failure strain (�1.5%). These results would be expected from standard un-
notched laminate tensile tests. By contrast, specimens cut from within the damaged zone (process zone

ahead of the crack) showed very low stiffness but high strain (nominal) to failure, typically 3–4% for the

material investigated. These results are significant because they are much higher than the fibre failure

strains. Kongshavn and Poursartip�s experimental technique offers a robust and physically meaningful
methodology for measuring this characteristic and the results of a statistically significant number of

specimens should yield an accurate measure of F III.

3.4. Effective strain functions

As mentioned previously, the selection of the damage potential function presented in Section 2.4 is the

least physically based aspect of the model development. As a result, a detailed methodology for charac-

terizing the required parameters (K, L, S, T , and U ) is not currently possible. However, it is possible to
argue from a purely intuitive point of view what some of the constants in Eq. (12) should be.

4. Post-processing and physical interpretation of damage

The formulation of CODAM3Ds damage model lends itself to interpretation of damage in a manner that

is consistent with experimental observations.

Experimental measurements of matrix damage in composite laminates generally come from damage

maps generated by pulse-echo ultrasonics (PEUS), C-scan, or other non-destructive measurement tech-
niques, and section micrographs. Fibre damage is usually measured using the deply technique. Careful

separation of the individual laminae allows a visual inspection of fibre damage which can then be quantified

by measuring the width across which the fibres have been broken and summing them up for each ply.

Multiplying the total fibre breakage length by the ply thickness results in quantification of the fibre

breakage area (Delfosse et al., 1995).

A method of predicting matrix and fibre damage based on the interpretation of the damage state with

reference to the damage growth functions has been incorporated in the model. If the current state of

damage, x, at an integration point in a finite element falls on the first portion of the damage growth
function, it can be entirely attributed to matrix cracking and delamination (x ¼ xm). The relative amount
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of matrix cracking is then determined by the proportion of the damage at saturation which is made up of

matrix cracks and delaminations, x0
m in Fig. 8a:

% matrix damage ¼ xm

x0
m

� 100% ð32Þ

If the damage state falls on the second segment of the curve, the total damage is made up of a portion of
fibre breakage and a portion of matrix damage/delamination. Again, the relative amounts of each can be

determined using the damage growth curves as shown in Fig. 8b:

% matrix damage ¼ xm

x0
m

� 100% ð33Þ

% fibre damage ¼ xf

x0
f

¼ �x � xm

1� x0
m

� 100% ð34Þ

The representation of these percentages as an actual total area of damage involves an interpretation of

experimental observations of the area of matrix cracking and fibre breakage in a sub-laminate at saturation

of damage. For example, at the saturation of damage in a four ply sub-laminate the staircase or helical

pattern of delamination and associated matrix cracking results in a total area of matrix cracking ap-

proximately equal to the in-plane area of the sub-laminate.
Consider an example. Assume that each integration point represents a sub-laminate, and that the planar

area of an element is 10 mm2. Further assume that the lay-up is quasi-isotropic such that the area of matrix

damage at saturation in a sub-laminate is also equal to 10 mm2. If the percentage of matrix damage for an

integration point (i.e. sub-laminate) were predicted to be 84% then the area of matrix damage in that sub-

laminate would be calculated to be 8.4 mm2. These matrix damage areas can then be summed over the

entire finite element mesh to give a prediction of the total matrix damage area.

While the same calculations apply to fibre damage, the area of fibre breakage associated with saturation

of damage in a sub-laminate is not as simple to define. Experimental evidence shows that the amount of
fibre damage is not simply a function of the lay-up. Not only does fibre damage tend to be more localized

Fig. 8. Portion of damage attributed to matrix cracking/delamination (xm) and to fibre breakage (xf ) for a given damage state (x).
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than matrix damage but the material system (e.g. brittle versus tough matrix) plays a role as well (Delfosse

et al., 1995). For a quasi-isotropic sub-laminate, a reasonable first approximation may be four times the

cross sectional area of a ply, or simply the cross sectional area of the sub-laminate, times the fibre volume

fraction (i.e. roughly the total cross-sectional area of fibres).

5. Numerical application

Typical structural problems involve dynamic loading and detailed predictions of the various damage

modes are of interest. To investigate the application of the model to these types of problems, an extensive

investigation of out-of-plane impact loading of composite test coupons by Delfosse (1994) has been used as
the basis for a case study, the results of which are summarized below. Further synthesis and analysis of the

experimental data has been presented in Delfosse et al. (1995) and Delfosse and Poursartip (1995) all of

which have been used to guide the application of the model and the discussion of the numerical predictions.

The experimental work investigates the influence of a number of material and target related parameters

(e.g. target thickness, material, boundary effects, and indenter shape) on the normal impact response of

polymeric composites.

5.1. Experimental set-up

The target geometry used predominantly in the experimental investigation is that of a 101.6 mm by 152.4

mm (4 inch by 6 inch) coupon clamped on to an aluminium backing plate with a 76.2 mm by 127.0 mm (3

inch by 5 inch) rectangular opening. The plate geometry is consistent with the Boeing (1988) and SACMA

(1988) compression after impact (CAI) standards. In all the test results discussed below, a 25.4 mm (1.0

inch) diameter hemispherical tipped hardened steel indenter was used. The gas gun projectile weighed 0.314

kg and was launched at velocities up to 50 m/s. The low velocity, high mass tests include results from two

drop-weight apparatuses with indenter masses of 6.141 and 6.330 kg.

In addition to the force and displacement-time histories, detailed post-test damage characterizations were
carried out by Delfosse and Poursartip (1995). Quantitative measurements of matrix damage, characterized

by delaminations, and of fibre breakage were made using PEUS and C-scan images, section micrographs

and deplies.

5.2. Objective

The goal of the numerical case study was to quantitatively predict the various experimental measure-

ments made during the test series. These comparisons include force and displacement-time histories and

total fibre and matrix damage, size of fibre and matrix damage zones, and energy loss, all as a function of
available energy. For the purposes of the current study, two parameters were selected as variables for

evaluating the performance of the CODAM3Ds model: target material and available energy. Of particular

interest to the current investigation are the drop-weight and gas gun tests performed on CFRP systems:

T800H/3900-2 and IM6/937 with quasi-isotropic stacking sequences of ½45=90=� 45=0�3S and

½45=0=� 45=90�3S, respectively. While both materials have similar elastic properties, the 937 resin used in
the latter is more brittle providing a contrast with the tougher 3900-2 matrix system. If the differences in the

material model input can be argued from a physical point of view, or from experimental observations (i.e.

not using calibration constants) then the predictive capability of the model can be used with a greater
degree of confidence.
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5.3. Material characterization

Lamina elastic properties for the T800H/3900-2 CFRP are shown in Table 1. The effective sub-laminate

properties were obtained using classical laminate plate theory (CLPT). Also shown in Table 1 are the

lamina strength properties required by the Chang and Chang (1987) and the Matzenmiller et al. (1995)

models, which are the two other constitutive models used here for comparison purposes. The Weibull shape

parameter, m, required by the MLT model was calibrated in a previous investigation by Williams and
Vaziri (1995, 2001).
The constants used to characterize the damage growth and residual stiffness functions of the CO-

DAM3Ds model are summarized in Table 2. Simple mathematical analyses such as the ply discount method

have been used to derive most of the values. Where possible, published experimental data has been used to

guide the selection of these parameters. The experimental work by Kress and Stinchcomb (1985) and

Poursartip et al. (1986), for example, provide the background experiments for the selection of the residual

stiffness constants while Camponeschi and Stinchcomb (1982) and O�Brien and Reifsnider (1981) guided
selection of the residual shear modulus at matrix damage saturation.

Table 2

CODAM3Ds damage model characterization for T800H/3900-2

Parameter Value Parameter Value

Tensile Compressive Tensile Compressive

x0
m 0.800 0.800 Kx 1.000 1.200

R0
E 0.650 0.650 Ky 1.333 1.400

R0
G 0.650 0.650 Lx 1.333 1.400

F I 0.010 Ly 1.000 1.200

F II 0.016 Sx ¼ Sy 4.000

F III 0.040 Tx ¼ Ty 1.000

xIIE 0.160 Ux ¼ Uy 1.000

xIIG 0.160

EII 0.930 0.930

GII 0.930 0.930

Table 1

Characterization data for the T800H/3900-2 plates

Lamina Sub-laminate [45/90/�45/0] Units

Parameter Value Parameter Value

q 1543 q 1543 kg/m3

E1 129.1 Ex 48.37 GPa

E2 7.45 Ey 48.37 GPa

G12 3.52 Gxy 18.36 GPa

m12 0.33 mxy 0.320

tply 0.194 tsublam 0.775 mm

Xt 2089 N/A – MPa

Xc 1482 N/A – MPa

Yt 79 N/A – MPa

Yc 231 N/A – MPa

Sc 133 N/A – MPa

m 10 N/A –

Elastic constants are from Ilcewicz (1992), the strength constants are from Straznicky et al. (1993), and the MLT constant, m, is from
Williams and Vaziri (1995, 2001).
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The damage growth and residual stiffness functions defined by the parameters in Table 2 are shown in

Fig. 9a and b, respectively, while the resulting 1D stress–strain response for the CODAM model of T800H/

3900-2 is shown in Fig. 9c. A detailed description of the procedure used to arrive at the parameters listed in
Table 2 is presented in Appendix A.

5.4. FEM model

The test coupon is modelled as a simply supported 76.2 mm by 127 mm (3 inch by 5 inch) plate. The
hardness of the steel and the relative stiffness of the indenter compared to the through-thickness stiffness of

the composite plates also make the assumption of a non-deformable indenter (modelled as a rigid material)

reasonable. As a result, only the profile of the indenter has been included in the FEM model (see Fig. 10).

Four node quadrilateral Mindlin-type shell elements (developed by Belytschko et al. (1984)) were used

throughout the model. For the computations using the CODAM3Ds model, the symmetry of the problem

and the in-plane isotropy of the material would have allowed the use of two-fold symmetry (quarter plate

symmetry) to reduce the size of the model. However, since two other lamina-based composite damage

models were used to provide comparisons with the existing capabilities of LS-DYNA, a full spatial dis-
cretization was required. Twelve integration points were used through the thickness, two per sub-laminate.

Fig. 9. (a) Damage growth function, (b) residual stiffness function, and (c) predicted one-dimensional stress–strain response for the

T800H/3900-2 material.
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A minimum of six could have been used, one for each [0=45=90=� 45] sub-laminate. However, the problem
involves a significant amount of bending deformation and thus the additional integration points for cap-

turing the through-thickness strain gradients is warranted. The other lamina-based constitutive models

require the use of 24 integration points (one per ply) through the thickness.

Hourglass control was achieved using the standard LS-DYNA viscous method with the default coeffi-
cients. The default hourglass control parameters were also found to be sufficient to avoid zero energy modes

of deformation. Contact between the indenter and plate was modelled using the penalty stiffness method

incorporated in LS-DYNA.

A uniform square mesh was selected for the composite plate so as to preserve an unbiased damage

propagation path. In recognition of the inherent mesh sensitivity of strain-softening constitutive models

(e.g. Bazant and Cedolin, 1991; and Belytschko et al., 1986) the element size effect is treated using the crack

band approach proposed by Bazant and Oh (1983). Accordingly, the amount of energy dissipation during

the damage process, or energy release rate Gf is taken to be equal to the energy density (area under the
uniaxial stress–strain curve) times the characteristic length h of the element. This quantity, which can be
thought of as the energy consumed in the formation and propagation of damage per unit area in a rep-

resentative volume element of material is a material constant determined from tests. To maintain Gf

constant and therefore retain the objectivity of the numerical modelling, the slope of the softening curve

(post-peak branch of the stress–strain curve) would have to vary with the element size h. The smaller the
element size, the shallower (flatter) the softening curve would be. Therefore, for an element that is smaller

than a characteristic size (typically equal to the size of the fracture process zone) a relatively large strain

would be required to completely exhaust its load carrying capacity. The finite element mesh for the
composite plate selected in the current study consists of 960 square shell elements with h ¼ 3:175 mm. As
discussed in Appendix A, this element size is consistent with the height of the process zone and results in an

energy release rate that is comparable with the expected values reported in the literature. A rigid material

model with the elastic properties of steel (density q ¼ 7810 kg/m3, E ¼ 208:5 GPa, and m ¼ 0:33) was ap-
plied to the indenter mesh. The elastic modulus and Poisson�s ratio are required by the contact algorithm to
predict an appropriate contact stiffness. The use of a simple shell representation of the indenter does not

provide the correct kinematic properties because the mass of the shell structure is significantly lower than

that of the actual projectile. To compensate for this, a lumped mass with an appropriate value was asso-
ciated with the central node of the indenter mesh.

Fig. 10. Exploded view of the FEM model of the CAI standard impact specimen with the assembled mesh. The target mesh consists of

960 uniform elements of size 3.175 mm� 3.175 mm.

K.V. Williams et al. / International Journal of Solids and Structures 40 (2003) 2267–2300 2289



Two sets of numerical analyses were carried out for each velocity range. The first set consisted of tests at

velocities corresponding to impact energies of 5–60 J of energy, in increments of 5 J. Additional runs at 12,

17, and 22 J were used to provide more resolution in the results near the onset of damage, identified as 18 J

for matrix/delamination initiation and 22 J for fibre breakage from the experimental results (Delfosse and
Poursartip, 1995). The second set of runs corresponded to the energy levels used in the experimental low

and high mass tests.

5.5. Results

5.5.1. Quantitative damage measures

Fig. 11a shows the predictions of total matrix damage in the form of delamination size, as a function of
incident or available energy while Fig. 11b shows fibre breakage area as a function of incident energy. In

both cases the plots demonstrate the excellent correlation between the FEM results and the experimental

observations of Delfosse and Poursartip (1995). The quasi-static tests were performed using a hydraulically

actuated MTS load frame. The geometry of the indenter and test fixture were identical to that used in the

impact tests. The energy in Fig. 11 is the available energy calculated from the quasi-static force–dis-

placement curve. While the predictions are very good, especially given the simplifying assumptions that

have been made in the material characterization, there are deviations from the observed trends. For ex-

ample, the prediction of delamination damage area shown in Fig. 11a is good for impact energies over 20 J
but below that level the FEM model predicts damage where none was observed experimentally. Damage

initiation is shown to occur at just 5 J, much lower than the measured 18 J. Even damage histories for a

single 60 J impact show the same trend although, interestingly, the initial jump in damage occurs earlier in

the high mass impact than in the low mass event. The same over-prediction of damage at energies less than

20 J is observed in Fig. 11b. Numerically, fibre damage appears to be closely coupled to delamination

damage. This could possibly result from too low a value for F II but if the interpretation of the threshold for
fibre breakage is to be linked with the strain-to-failure of the fibre, values over 1.7% or 1.8% are unrea-

sonable. Rather, the source of the discrepancy can be traced back to the inherent link between the fibre and
matrix damage in the damage growth function. The damage growth functions used for the matrix and fibre

damage are the same. As a result the model predicts that fibre damage shows the same sensitivity as matrix

damage to off-axis strains. In reality, fibre damage is primarily driven by strains in the fibre direction. As a

Fig. 11. Comparison of experimentally measured and predicted (a) total delamination area and (b) total fibre breakage area as a

function of incident energy for a ½45=90=� 45=0�3S T800H/3900-2 CFRP plate.
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result, the model over-predicts the fibre damage at low strains where the added effect of the off-axis strains

can push the damage potential over the limit for fibre failure. Matrix damage grows with the stiffness loss

that results from this fibre damage. The end result is too much damage predicted at lower strains. The error

is relatively small though, and the experimental measurement could have overlooked some damage as well,
as one would expect at least some very minor damage to grow right from the load application.

The drop in fibre breakage area above 50 J of impact energy is associated with the localization of the

damage growth due to the complete loss of stiffness of the elements directly under the indenter (see also

Section 5.5.2). This localization of the damage reduces the driving force for further damage in the neigh-

bouring elements. Note that the localization does not affect the prediction of the delamination area as much

although the prediction of delamination area also falls below the experimental measurements above 50 J.

Saturation of matrix cracking occurs before the complete stiffness loss of the element and is associated with

only a partial decrease in the load carrying capability of the material allowing continued load transfer, and
hence damage growth, in neighbouring elements. If the comparison were to have been continued to even

higher energy levels one would expect the effect to become more significant on the delamination damage

prediction.

5.5.2. Qualitative damage predictions

Fig. 12 compares the predictions of projected matrix damage/delamination size (xm=x0
m in Eq. (32)) to C-

scan images of delamination growth for the low mass impact events (i.e. gas gun tests). Both sets of images

(numerical and C-scan) are to the same scale. The C-scans were taken across the width of the specimens so

the whole plate is not visible. The box drawn around the numerical results highlights the location of the

plate boundaries relative to the part of the plate modelled (i.e. a 127.0 mm by 76.2 mm simply supported

plate). The low levels of damage predicted at the mesh boundaries at higher energy levels (e.g. 33.4 and 56.4

J in Fig. 12) are caused by local through-thickness shear strains, an effect of the boundary condition applied

at the edge of the plate. The qualitative comparisons of the size of the predicted and measured damage
zones are excellent over the whole range of impact energy levels. It is interesting to note that even the

predicted localization of the damage growth along the length of the specimens is not unrealistic. Although,

numerically this localization is confined to a region of only one or two elements wide, the C-scan images

show the same preferred direction in the damage growth at impact energies of over 30 J. The asymmetry in

the predictions at higher energy levels is a result of localization of the damage mentioned in the previous

section. As elements fail (i.e. x ¼ 1), the redistribution of the loading to neighbouring elements may no
longer be symmetric. This can drive more damage in one direction resulting in an asymmetry of the pre-

dicted damage pattern. At low impact energies, none of the elements fail completely and the symmetry of
the damage growth is preserved.

5.5.3. Force-time histories

Examples of the predicted force-time histories for two of the high mass (drop-weight) experiments are

shown in Figs. 13 and 14. To assess the performance of the CODAM3Ds model against current composite

models in the LS-DYNA code, two other material models have been used to analyse the same problem.
MAT22 in LS-DYNA is a composite failure model based on the work of Chang and Chang (1987) and is

one of the most widely used composite models in LS-DYNA. Failure is predicted in a number of modes

including matrix cracking and fibre splitting using modifications of the criteria proposed by Hashin (1980).

The second model is based on the CDM approach developed by Matzenmiller et al. (1995) (MLT model),

which was implemented as a user material model in LS-DYNA (Williams and Vaziri, 1995, 2001). In both

cases, the effect of the damage on the laminate response is modelled on a lamina-by-lamina level (an in-

tegration point per lamina).

Fig. 13 shows results for a high mass 34.5 J impact. The MLT and CODAM3Ds models exhibit very
good agreement with the experimental measurements. While the MLT model slightly over-predicts the peak

K.V. Williams et al. / International Journal of Solids and Structures 40 (2003) 2267–2300 2291



forces, the CODAM predictions show a sudden drop in force (i.e. jump in damage growth leading to an

abrupt loss in plate stiffness) of a larger magnitude than that observed experimentally. Note, however, that

the time and hence projectile displacement at the onset of substantial damage growth is very close to that

observed experimentally. This over-prediction of the stiffness loss in the plate also leads to a slight over-

prediction of the duration of the event. It is important to note that the MLT results were the final product

of an extensive parametric study used to arrive at a reasonable value for the m parameter in the Weibull
function for damage (Williams and Vaziri, 2001). The CODAM results required no such curve fitting
exercise. In marked contrast to the MLT and CODAM3Ds results, the Chang and Chang failure model

Fig. 12. Comparison of predicted projected matrix/delamination damage and experimental C-scan images for low mass impact events

on a ½45=90=� 45=0�3S T800H/3900-2 CFRP plate. Results presented are for (a) 9.4 J (v ¼ 7:74 m/s, m ¼ 314 g), (b) 22.0 J (v ¼ 11:84 m/s,
m ¼ 314 g), (c) 33.4 J (v ¼ 14:59 m/s, m ¼ 314 g), and (d) 56.4 J (v ¼ 18:97 m/s, m ¼ 314 g) impacts.
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significantly under-predicts the peak force and the initiation point for significant stiffness loss. The net
result being a large over-prediction of the duration of impact event.

Fig. 13. Comparison of predicted and measured force-time histories for a high mass 34.5 J event on a ½45=90=� 45=0�3S T800H/3900-2
CFRP plate.

Fig. 14. Comparison of predicted and measured force-time histories for a high mass 58.2 J event on a ½45=90=� 45=0�3S T800H/3900-2
CFRP plate.
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Fig. 14 shows the same series of results (experimental, CODAM3Ds, MLT, and Chang and Chang) for a

higher energy impact at 58.2 J. The CODAM results again compare extremely well with the experimental

observations. Here the same sudden drop in stiffness is observed. This time, its position seems to indicate a

delay in the onset of damage growth compared to the experiments. The MLT results are extremely poor in
this case. The same constant (i.e. m ¼ 10) and hence the same shape for the strain-softening curve has been
used but the peak force is over-predicted by 50%. Williams and Vaziri (2001) showed that it was necessary

to change (increase) the Weibull shape factor, m, as the energy level of the impact increased in order to
achieve good agreement with the experimental results. The CODAM3Ds model continued to show good

agreement up to energy levels of 84 J (Williams, 1998) without needing to change the characterization.

Finally, it is worth noting that the Chang and Chang model still fails to capture the characteristics of the

measured force-time history.

5.5.4. Effect of material characterization

Fig. 15 shows the predicted and measured matrix damage growth as a function of incident energy and

compares the results of the T800H/39000-2 system with those of IM6/937. Both are CFRPs but the 937

resin is a more brittle matrix system. Note that the present numerical model accurately captures the distinct

trends associated with the two materials. This is most significant because the only difference between the

two numerical models, apart from the elastic material properties, is the characterization of the damage
growth functions. The residual stiffness functions are, to a reasonable approximation, only a function of the

material lay-up and the difference between the [45=90=� 45=0] T800H/3900-2 and the [0=45=� 45=90] IM6/
937 is not significant in this respect. However, a difference in the damage growth functions is expected. The

IM6 and T800 fibres have similar values of strain-to-failure and only the properties dominated by the

matrix response will change. These include the onset of matrix damage (characterized by F I) and the rupture
threshold (F III). Guided by published values for the onset of matrix cracking strain and for the rupture
strain (e.g. the work of Kongshavn and Poursartip, 1999), the damage growth functions for the T800H/

3900-2 material were modified to represent the behaviour of the IM6/937 material system. A more detailed

Fig. 15. Projected delamination size as a function of impact energy showing the difference in damage zone size between the brittle (IM6/

937) and tough (T800H/3900-2) CFRP systems. Numerical predictions for each system are also shown. The FEM data shown combine

the high and low mass results. Note that only the trends of the experimental data are shown.
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discussion of the parameters used for the IM6/937 and of the comparison between the brittle and tough

matrix composites results is presented in Williams (1998) and is the subject of an upcoming publication.

6. Summary and conclusions

A mathematical model has been developed to predict damage growth and its effects on the response of
laminated FRP composites. The formulation is based on the sub-laminate response, in recognition of the

fact that the laminate response is driven not only by the lamina properties but also by the ply interactions

through the stacking sequence and damage growth (i.e. it is a system response). The resulting application of

CDM model at the sub-laminate level within the FEM framework leads to a formulation that is both

physically meaningful and mathematically simple.

Throughout the model development, the implications of experimental observations of damage growth

and of the effects of damage on the material response have been used to derive the mathematical formu-

lation. The model is based on a two-phase material response, the first dominated by matrix cracking and
delamination and the second by combined matrix and fibre damage growth. The bilinear damage growth

and residual stiffness functions used to describe this behaviour have been constructed based on a simple

interpretation of available experimental observations of damage growth and associated degradation in

material properties.

Methodologies for determining the material constants required by the model have also been discussed.

The most significant aspect of the methodologies is that they are based entirely on a physical interpretation

of damage in laminated FRPs. Most properties can be gathered from the literature provided a well-

established base of research exists for the desired composite system. Where experimental data is not
available, simple analytical techniques have been proposed to provide order-of-magnitude estimates of

many of the model input parameters.

One of the main features of this model, which makes it advantageous over other CDM based models is

that it lends itself to physically meaningful predictions of damage size and distribution that can be com-

pared directly with experimental measurements. The brief overview presented in this paper of some of the

results from a particular case study, namely the prediction of the response of a laminated plate to normal

impacts, clearly shows the capabilities of the model. The results show that simple physical reasoning based

almost entirely on widely available, published material characterization data, which in turn is based on
relatively simple standard test schemes, can be successfully used to define the input parameters required to

characterize the model.
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Appendix A. Material characterization of T800H/3900-2 for the CODAM model

This appendix describes in more detail the procedure used to characterize the properties required by the

CODAM constitutive model. As discussed in Section 5.3, CLPT was used to derive the effective subla-

minate elastic properties for the T800H/3900-2 CFRP shown in Table 1. The constants used to characterize
the damage growth and residual stiffness functions of the CODAM model are summarized in Table 2. As
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the material has a quasi-isotropic lay-up, the in-plane constants for both directions, x and y, are the same.
The only exceptions are the scale factors Ki and Li, on ex and ey respectively, where K1c;t ¼ L2c;t and
K2c;t ¼ L1c;t. To simplify the discussion of the derivation of these material constants, let us associate the x-
and y-directions with the 0� and 90� ply directions, respectively.
As was discussed in Section 2.7, the response predicted by the 1D CODAM model is independent of x0

m.

As this remains to be proven in the multidimensional implementation of the model, an appropriate value

must be selected. Using a simple volumetric analysis and making the assumption that the matrix cracking at

saturation associated with a given direction in the laminate will result in complete matrix cracking of all off-

axis plies (i.e. the 	45� and 90� plies, for the x-direction), one obtains:

x0
m ¼ Adamaged

Atotal
¼ n�45 þ n45 þ n90

n0 þ n�45 þ n45 þ n90
¼ 3
4
ffi 0:8

The residual stiffness at saturation of matrix cracking, R0
E, is estimated using the ply-discount method. The

same assumptions noted above for x0
m apply here. Further, in the application of the model a significant

amount of delamination is expected and so it is possible to assume that the off-axis plies do not contribute
to the stiffness once a significant amount of matrix cracking has been induced in the material (i.e. a

completely decoupled response). Under these conditions, according to the ply-discount method, the

damaged stiffness of the laminate is Elam ¼ 129:1=4 ¼ 32:28 GPa and since E0lam ¼ 48:37 GPa (Table 1), the
residual stiffness becomes R0

E ¼ Elam=E0lam ¼ 0:67 ffi 0:65.
Depending on the assumptions made, the ply-discount method can give a wide range of predictions from

as low as 0.67 (given the simplifications made above) to as high as 0.89 (a completely coupled response with

perfect bonding between the plies such that the 	45� plies continue to contribute to the stiffness). To
substantiate the selection of R0

E we must turn to the literature. Experimental work by Kress and Stinchcomb
(1985) on fatigue damage growth in T300/5208 CFRP ð½0=45=90=� 45�Þ4S laminates shows stiffness re-
duction factors as high as 40%. Lafarie-Frenot and Riviere (1988) also show stiffness reductions on the

order of 30–40% for quasi-isotropic CFRP lay-ups as do Poursartip et al. (1986). Based on these obser-

vations, the ply-discount prediction of R0
E ¼ 0:65 is reasonable. Bakis and Stinchcomb (1986) observed that,

under fatigue loading, the stiffness reduction in tension was less than that in compression in a quasi-

isotropic T300/5208 CFRP with the residual compressive modulus being closer to 75%. However, in the

current analysis the difference between tensile and compressive stiffness loss has been ignored.

Using the same assumptions, the ply-discount method predicts a residual stiffness of 0.05 for R0
G, the

characterization constant which is required to determine GII. This is clearly unreasonable and again we
must turn to the literature for guidance. Data on shear modulus reduction due to damage is much less

common than the published work available on the direct elastic modulus E. O�Brien and Reifsnider (1981)
noted reductions in Gxy of 13–14% in fatigue loaded ½0=90=	 45�S boron/epoxy laminates compared to 15–
16% in Ex in the same tests. However, Camponeschi and Stinchcomb (1982) observed that the reduction in

Gxy was almost twice that of Ex in ½0=90=	 45�S CFRP laminates. They also concluded that a stacking
sequence that avoids 	45� sequences (e.g. the T800H/3900-2 ½0=45=90=� 45�3S studied here) would be less
susceptible to a reduction in Gxy . Although this data does not yield a precise value to be used for R0

G, the
assumption that R0

G ffi R0
E seems reasonable as a first approximation.

Appropriate values for most of the scaling constants on the strain terms in the damage growth potential

functions, Fx and Fy (Eq. (12)), can be argued from intuition. For example, Kxt and Lyt should be 1 as ex and
ey are the primary drivers of damage in the x- and y-directions respectively. However, appropriate values for
Kyt and Lxt are less obvious. While the effect of ey on damage in the x-direction will obviously be less than
that of ex, the transverse strain still contributes through the 	45� plies and to a lesser extent through
cracking induced in the 90� plies of a ½45=90=� 45=0�S lay-up. A value of Lxt ¼ 1 is too low while Lxt ¼ 2
(i.e. a contribution of 0:5ey to xx) is too high. Lacking a more physical argument than the one presented
here, Lxt (and Kyt by the same argument) is set to 4/3 (i.e. a contribution of 0:75ey to xx). The thresholds for
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damage growth in compression are generally higher than those in tension (i.e. higher compressive strengths)

and values of Kxc ¼ Lyc ¼ 1:2 and Kyc ¼ Lxc ¼ 1:4 are used to reflect this.
The out-of-plane shear actions are assumed to have a secondary effect on damage growth and so Tx and

Ux (and Ty and Uy by symmetry) are set to 1. The final parameters, Sx and Sy are more difficult to choose.
The degradation of the in-plane shear modulus is expected to result in large shear strains. As a result, a low

value for S could cause an instability in the predicted damage growth. On the other hand, in-plane shear
certainly plays a role in damage growth and removing cxy from the damage growth potential functions

would be an over-simplification. Results of initial runs of the CODAM model in the plate impact problem

supported these observations. A value of S ¼ 1 resulted in much too strong a sensitivity to shear stiffness
reduction. A value of S ¼ 4 was found to be a more reasonable choice. As noted before in Section 2.4, the
damage growth potential functions are the least physical component of the model and are the subject of

current research. However, this does not affect the validity of the approach.
The thresholds F I,F II, and F III are associated with the strain states at the onset of matrix cracking and

delamination, fibre breakage, and rupture respectively. Typically, a strain of 0.5–0.7% is associated with

first ply failure in unidirectional test coupons of CFRP laminates. Here a value of 1% has been assumed

with F I ¼ 0:01. F II is the threshold for fibre failure. Again, in uniaxial tensile tests, fibre failure strains of
approximately 1.2–1.7% are observed for typical CFRP materials. The failure strain of T800H fibres as

measured from a tensile test on a unidirectional lamina is reported to be 1.6% and therefore F II has been set
to 0.016.

Work by Kongshavn and Poursartip (1999) demonstrated rupture strains as high as 3% for material
extracted from the process zone (softened material) ahead of the crack tip in T300H/F593 CFRP laminates.

The F593 epoxy matrix is considered to be brittle and it is assumed here that in a material with a tougher

matrix, such as the 3900-2, it may be possible to achieve stable damage growth at even higher strains.

Lacking any more substantial data on which to base F III, a value of 0.04 was chosen for the T800H/3900-
2 material.

Having set x0
m and F I,F II, and F III, xII can be determined from Eq. (7):

xII ¼ x0
m

F II � F I

F III � F I

� �
¼ 0:8 0:016� 0:010

0:040� 0:010

� �
¼ 0:16

And given x0
m, R

0
E, G

0
m, and xII we can apply Eq. (15) to determine EII and GII:

EII ¼ GII ¼ 1� ð1� R0
EÞ

xIIE
x0

m

¼ 1� ð1� 0:65Þ ¼ 0:93

From Eq. (6) we can assume that xIIG ¼ xIIE . In the limiting case of xx ¼ xIIE at onset of fibre breakage and
with xy ¼ 0, xS ¼ xIIE but xS ¼ xIIG at the onset of fibre breakage and therefore xIIG ¼ xIIE . And so, with
R0
E ¼ R0

G, G
II ¼ EII ¼ 0:93. Note that the assumption that xIIG ¼ xIIE holds for cases where either xx ¼ 0 or

xy ¼ 0, and for xx ¼ xy but is not true for any general damage state.
The damage growth and residual stiffness functions defined by the parameters derived above are shown

in Figs. 9a and b, respectively, while the predicted 1D stress–strain response for the CODAM model of

T800H/3900-2 is shown in Fig. 9c.

While the initiation of damage may depend on the operative stresses (or strains), from the strictly

physical viewpoint the actual formation of damage requires a certain amount of energy, namely the fracture

energy. Regardless of the choice of mesh, which is a subjective aspect of numerical analyses, the overall

energy dissipation due to damage must remain constant. Otherwise, the results of the numerical solution

will not be objective. According to the crack band theory developed by Bazant and Oh (1983) to remedy
this problem, for an element that is representative of the characteristic process zone size, the product of the
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area under the uniaxial stress–strain curve and the element size corresponds to a fracture energy, Gf that is

a material constant.

In our case the area under the uniaxial stress–strain curve in the post-damage region (corresponding to

damage phases 1 and 2 in Fig. 9c) works out to be 17.5 MJ/m3. Also, the experimental study conducted by
Kongshavn and Poursartip (1999) on overheight compact tension specimens of T300H/F593 CFRP ma-

terial system revealed that the height of the process zone was approximately 5 mm. In a finite element study

of such a problem (Williams et al., 1999) one would use an element size of at least 2.5 mm (on either side of

the notch) in order to cover the process zone. In the current study we are dealing with a tougher CFRP

system where a slightly wider process zone would be expected. Therefore we have chosen a square element

size of 3.175 mm (corresponding to an area of 10 mm2) as the characteristic element size. The energy release

rate computed from the post-damage area under the uniaxial stress–strain curve and the selected element

size is Gf ¼ 17:5 MJ=m3 � 3:175 mm ¼ 55:6 kJ/m2. In other words, when fully damaged an element is
capable of dissipating 55.6 kJ/m2.

The experimental study by Delfosse and Poursartip (1997) has shown that for T800H/3900-2 CFRP

when the fibre breakage is the only form of failure, the energy release rate (as estimated from three-point

bend tests of unidirectional specimens) is GFD ¼ 160	 10 kJ/m2. The energy release rate for matrix damage
was also reported to be GMD ¼ 5:0	 0:5 kJ/m2. According to our previously estimated quantities of fibre
and matrix damage and the associated experimentally determined values of energy release rates, the energy

release rate corresponding to a fully damaged sublaminate can be written as 0:75GMD þ 0:25GFD � 44:0	 2
kJ/m2. The latter is in reasonable agreement with the Gf value calculated above and demonstrates the
consistency of the methodology presented here.

In summary, our approach has been shown to be physically justifiable and consistent with principles of

damage mechanics, strength of materials and fracture mechanics. Fine tuning of the model parameters was

not the object of the exercise here, rather the intent was to show the consistency of the approach using

reasonable estimates of unknown parameters supported by available experimental measurements and

observations.
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